The clinical application of artificial intelligence technology in spinal surgery

Authors

  • Zihe Feng
  • Honghao Yang Beijing Chao-Yang Hospital
  • Xinuo Zhang
  • Yong Hai

DOI:

https://doi.org/10.54844/mr.2023.0428

Keywords:

Artificial intelligence, spinal surgery, robot, machine learning, deep learning

Abstract

Artificial intelligence (AI) is a field that investigates how to endow computers and computer-controlled machines with the
capability to imitate human intelligence. As a significant driving force for the new wave of technological revolution and
industrial transformation, AI has emerged as a research hotspot in the medical domain. The progress in AI technology has
profoundly influenced medicine, particularly offering new opportunities for precision and automation in spinal surgery. AI, a
comprehensive field, encompasses a variety of research areas such as machine learning (ML), deep learning (DL), computer
vision, natural language processing, and robotics, among others. These subfields intersect and potentially overlap to a
significant degree. Furthermore, robotics and AI, closely intertwined, maintain a symbiotic relationship. AI, a discipline within
computer science, aspires to develop and implement intelligent machines, with robots exemplifying these creations in
physical form. AI equips robots with capabilities for environmental comprehension, information processing, decision-making,
and learning. This review aims to examine the clinical application of AI technology in spinal surgery, with a focus on
traditional ML, DL, and robotics. We will discuss the merits and drawbacks of these technologies, as well as future
development trends.

References

Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36–S40. [PMID: 28126242 DOI: 10.1016/j.metabol.2017.01.011]

Benzakour A, Altsitzioglou P, Lemée JM, Ahmad A, Mavrogenis AF, Benzakour T. Artificial intelligence in spine surgery. Int Orthop. 2023;47(2):457–465. [PMID: 35902390 DOI: 10.1007/s00264–022–05517–8]

Hornung AL, Hornung CM, Mallow GM, et al. Artificial intelligence in spine care: current applications and future utility. Eur Spine J. 2022;31(8):2057–2081. [PMID: 35347425 DOI: 10.1007/s00586–022–07176–0]

Elson DS, Cleary K, Dupont P, Merrifield R, Riviere C. Medical Robotics. Ann Biomed Eng. 2018;46(10):1433–1436. [PMID: 30209705 DOI: 10.1007/s10439–018–02127–7]

Theodore N, Arnold PM, Mehta AI. Introduction: the rise of the robots in spinal surgery. Neurosurg Focus. 2018;45(VideoSuppl1):Intro. [PMID: 29963916 DOI: 10.3171/2018.7.FocusVid.Intro]

Wang H, Tang ZR, Li W, et al. Prediction of the risk of C5 palsy after posterior laminectomy and fusion with cervical myelopathy using a support vector machine: an analysis of 184 consecutive patients. J Orthop Surg Res. 2021;16(1):332. [PMID: 34020677 DOI: 10.1186/s13018–021–02476–5]

DeVries Z, Hoda M, Rivers CS, et al. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients. Spine J. 2020;20(2):213–224. [PMID: 31525468 DOI: 10.1016/j.spinee.2019.09.007]

Wang H, Fan T, Yang B, Lin Q, Li W, Yang M. Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Front Med (Lausanne). 2021;8:771608. [PMID: 34988091 DOI: 10.3389/fmed.2021.771608]

Dong S, Li W, Tang ZR, Wang H, Pei H, Yuan B. Development and validation of a novel predictive model and web calculator for evaluating transfusion risk after spinal fusion for spinal tuberculosis: a retrospective cohort study. BMC Musculoskelet Disord. 2021;22(1):825. [PMID: 34563170 DOI: 10.1186/s12891–021–04715–6]

Wang KY, Suresh KV, Puvanesarajah V, Raad M, Margalit A, Jain A. Using Predictive Modeling and Machine Learning to Identify Patients Appropriate for Outpatient Anterior Cervical Fusion and Discectomy. Spine (Phila Pa 1976). 2021;46(10):665–670. [PMID: 33306613 DOI: 10.1097/BRS.0000000000003865]

Siccoli A, de Wispelaere MP, Schroder ML, Staartjes VE. Machine learning-based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg Focus. 2019;46(5):E5. [PMID 31042660 DOI: 10.3171/2019.2.FOCUS18723]

Halicka M, Wilby M, Duarte R, Brown C. Predicting patient-reported outcomes following lumbar spine surgery: development and external validation of multivariable prediction models. BMC Musculoskelet Disord. 2023;24(1):333. [PMID: 37106435 DOI: 10.1186/s12891–023–06446–2]

Xiong C, Zhao R, Xu J, et al. Construct and Validate a Predictive Model for Surgical Site Infection after Posterior Lumbar Interbody Fusion Based on Machine Learning Algorithm. Comput Math Methods Med. 2022;2022:2697841. [PMID: 36050996 DOI: 10.1155/2022/2697841]

Mamlook REA, Wells LJ, Sawyer R. Machine-learning models for predicting surgical site infections using patient pre-operative risk and surgical procedure factors. Am J Infect Control. 2023;51(5):544–550. [PMID: 36002080 DOI: 10.1016/j.ajic.2022.08.013]

Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual Understanding of Convolutional Neural Network—A Deep Learning Approach. Procedia Computer Science. 2018;132:679–688. [DOI: 10.1016/j.procs.2018.05.069]

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing; 2015: 234–241.

Alkadri S, Ledwos N, Mirchi N, et al. Utilizing a multilayer perceptron artificial neural network to assess a virtual reality surgical procedure. Comput Biol Med. 2021;136:104770. [PMID: 34426170 DOI: 10.1016/j.compbiomed.2021.104770]

Kónya S, Natarajan TS, Allouch H, Nahleh KA, Dogheim OY, Boehm H. Convolutional neural network-based automated segmentation and labeling of the lumbar spine X-ray. J Craniovertebr Junction Spine. 2021;12(2):136–143. [PMID: 34194159 DOI: 10.4103/jcvjs.jcvjs_186_20]

Das P, Pal C, Acharyya A, Chakrabarti A, Basu S. Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images. Comput Methods Programs Biomed. 2021;205:106074. [PMID: 33906011 DOI: 10.1016/j.cmpb.2021.106074]

Alukaev D, Kiselev S, Mustafaev T, Ainur A, Ibragimov B, Vrtovec T. A deep learning framework for vertebral morphometry and Cobb angle measurement with external validation. Eur Spine J. 2022;31(8):2115–2124. [PMID: 35596800 DOI: 10.1007/s00586–022–07245–4]

Ouyang H, Meng F, Liu J, et al. Evaluation of Deep Learning-Based Automated Detection of Primary Spine Tumors on MRI Using the Turing Test. Front Oncol. 2022;12:814667. [PMID: 35359400 DOI: 10.3389/fonc.2022.814667]

Mao L, Xia Z, Pan L, et al. Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population. Front Endocrinol (Lausanne). 2022;13:971877. [PMID: 36176468 DOI: 10.3389/fendo.2022.971877]

Yeh LR, Zhang Y, Chen JH, et al. A deep learning-based method for the diagnosis of vertebral fractures on spine MRI: retrospective training and validation of ResNet. Eur Spine J. 2022;31(8):2022–2030. [PMID: 35089420 DOI: 10.1007/s00586–022–07121–1]

Lee GW, Shin H, Chang MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol. 2022;22(1):147. [PMID: 35443618 DOI: 10.1186/s12883–022–02670-w]

Lehnen NC, Haase R, Faber J, et al. Detection of Degenerative Changes on MR Images of the Lumbar Spine with a Convolutional Neural Network: A Feasibility Study. Diagnostics (Basel). 2021;11(5):902. [PMID: 34069362 DOI: 10.3390/diagnostics11050902]

Zhang B, Yu K, Ning Z, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort study. Bone. 2020;140:115561. [PMID: 32730939 DOI: 10.1016/j.bone.2020.115561]

Hallinan JTPD, Zhu L, Yang K, et al. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Radiology. 2021;300(1):130–138. [PMID: 33973835 DOI: 10.1148/radiol.2021204289]

Saravi B, Zink A, Ülkümen S, Couillard-Despres S, Hassel F, Lang G. Performance of Artificial Intelligence-Based Algorithms to Predict Prolonged Length of Stay after Lumbar Decompression Surgery. J Clin Med. 2022;11(14):4050. [PMID: 35887814 DOI: 10.3390/jcm11144050]

Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–868. [PMID: 21384205 DOI: 10.1007/s00586–011–1729–2]

Le X, Tian W, Shi Z, et al. Robot-Assisted Versus Fluoroscopy-Assisted Cortical Bone Trajectory Screw Instrumentation in Lumbar Spinal Surgery: A Matched-Cohort Comparison. World Neurosurg. 2018;120:e745–e751. [PMID: 30172976 DOI: 10.1016/j.wneu.2018.08.157]

Wang JQ, Wang Y, Feng Y, et al. Percutaneous Sacroiliac Screw Placement: A Prospective Randomized Comparison of Robot-assisted Navigation Procedures with a Conventional Technique. Chin Med J (Engl). 2017;130(21):2527–2534. [PMID: 29067950 DOI: 10.4103/0366–6999.217080]

D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg. 2019;6:9–23. [PMID 31807602 DOI: 10.2147/RSRR.S190720]

Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and Robotics in Spinal Surgery: Where Are We Now? Neurosurgery. 2017;80(3S):S86–S99. [PMID 28350944 DOI: 10.1093/neuros/nyw077]

Lee NJ, Leung E, Buchanan IA, et al. A multicenter study of the 5-year trends in robot-assisted spine surgery outcomes and complications. J Spine Surg. 2022;8(1):9–20. [PMID: 35441099 DOI: 10.21037/jss-21–102]

Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976). 2007;32(2):E56-E64. [DOI: 10.1097/01.brs.0000252094.64857.ab]

Elie Massaad, Ganesh M Shankar, John H Shin. Novel Applications of Spinal Navigation in Deformity and Oncology Surgery-Beyond Screw Placement. Oper Neurosurg (Hagerstown). 2021;21(Supp 1):S23–S38. [DOI: 10.1093/ons/opaa322]

Khan A, Meyers JE, Siasios I, Pollina J. Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve. Oper Neurosurg (Hagerstown). 2019;17(1):61–69. [PMID: 30247684 DOI: 10.1093/ons/opy280]

Medtronic Corp. Mazor X Stealth Edition. Accessed August 20, 2023. https://www.medtronic.com/us-en/healthcare-professionals/products/spinalorthopaedic/spine-robotics/mazor-x-stealth-edition.html

Lee NJ, Zuckerman SL, Buchanan IA, et al. Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2,800 screws and 372 patients. Spine J. 2021;21(9):1504–1512. [PMID: 34022461 DOI: 10.1016/j.spinee.2021.05.015]

O’Connor TE, O’Hehir MM, Khan A, et al. Mazor X Stealth Robotic Technology: A Technical Note. World Neurosurg. 2021;145:435–442. [PMID: 33059080 DOI: 10.1016/j.wneu.2020.10.010]

Buza JA 3rd, Good CR, Lehman RA Jr, et al. Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use. J Robot Surg. 2021;15(1):13–23. [PMID: 32989623 DOI: 10.1007/s11701–020–01147–7]

Good CR, Orosz LD, Lehman RA, Gum JL, Fox D, Lieberman IH. Minimally Invasive Posterior Facet Decortication and Fusion Using Navigated Robotic Guidance: Feasibility and Workflow Optimization. Neurospine. 2022;19(3):773–779. [PMID: 36203302 DOI: 10.14245/ns.2244190.095]

Schwendner M, Meyer B, Krieg SM. [Robot-assisted pedicle screw placement]. Oper Orthop Traumatol. 2023;35(1):37–42. [PMID 36459194 DOI: 10.1007/s00064–022–00792–5]

Tinavi Corp. TiRobot. Accessed August 20, 2023. http://en.tinavi.com/

Tian W, Wang H, Liu YJ. Robot-assisted Anterior Odontoid Screw Fixation: A Case Report. Orthop Surg. 2016;8(3):400–404. [PMID: 27627725 DOI: 10.1111/os.12266]

Wei Tian. Robot-Assisted Posterior C1–2 Transarticular Screw Fixation for Atlantoaxial Instability: A Case Report. Spine (Phila Pa 1976). 2016;41 Suppl 19:B2–B45. [DOI: 10.1097/BRS.0000000000001674]

Lin S, Tang LY, Wang F, Yuan XW, Hu J, Liang WM. TiRobot-assisted percutaneous kyphoplasty in the management of multilevel (more than three levels) osteoporotic vertebral compression fracture. Int Orthop. 2023;47(2):319–327. [PMID: 36102979 DOI: 10.1007/s00264–022–05580–1]

Zhu ZD, Xiao CW, Tan B, et al. TiRobot-Assisted Percutaneous Cannulated Screw Fixation in the Treatment of Femoral Neck Fractures: A Minimum 2-Year Follow-up of 50 Patients. Orthop Surg. 2021;13(1):244–252. [PMID: 33448703 DOI: 10.1111/os.12915]

Ge S, Zhang L, Zhou Z, Jia S, Zheng L. [TiRobot-assisted surgery by O-arm navigation system for percutaneous minimally invasive treatment of posterior pelvic ring injury]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022;36(8):934–939. [PMID 35979782 DOI: 10.7507/1002–1892.202203135]

Tian W, Fan M, Han X, Zhao J, Liu Y. Pedicle screw insertion in spine: a randomized comparison study of robot-assisted surgery and fluoroscopy-guided techniques. J Clin Orthop Res. 2016;1(1):4–10. [DOI:10.19548/j.2096–269x.2016.01.003]

Yan K, Zhang Q, Tian W. Comparison of accuracy and safety between second-generation TiRobot-assisted and free-hand thoracolumbar pedicle screw placement. BMC Surg. 2022;22(1):275. [PMID: 35840958 DOI: 10.1186/s12893–022–01723–8]

Fayed I, Tai A, Triano M, et al. Robot-Assisted Percutaneous Pedicle Screw Placement: Evaluation of Accuracy of the First 100 Screws and Comparison with Cohort of Fluoroscopy-guided Screws. World Neurosurg. 2020;143:e492–e502. [PMID: 32758652 DOI: 10.1016/j.wneu.2020.07.203]

Chenin L, Capel C, Fichten A, Peltier J, Lefranc M. Evaluation of Screw Placement Accuracy in Circumferential Lumbar Arthrodesis Using Robotic Assistance and Intraoperative Flat-Panel Computed Tomography. World Neurosurg. 2017;105:86–94. [PMID: 28576710 DOI: 10.1016/j.wneu.2017.05.118]

Beutler WJ, Peppelman WC Jr, DiMarco LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976). 2013;38(4):356–363. [PMID: 22842558 DOI: 10.1097/BRS.0b013e31826b3d72]

Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976). 2010;35(24):2109–2115. [PMID: 21079498 DOI: 10.1097/BRS.0b013e3181d323ab]

Florian Ringel, Carsten Stüer, Andreas Reinke, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496–E501. [DOI: 10.1097/BRS.0b013e31824b7767]

Naureen Keric, Christian Doenitz, Amer Haj, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus. 2017;42(5):E11. [DOI: 10.3171/2017.2.FOCUS16552]

Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot. 2017;13(3):10. [PMID: 27672000 DOI: 10.1002/rcs.1779]

Ghasem A, Sharma A, Greif DN, Alam M, Maaieh MA. The Arrival of Robotics in Spine Surgery: A Review of the Literature. Spine (Phila Pa 1976). 2018;43(23):1670–1677. [PMID: 29672420 DOI: 10.1097/BRS.0000000000002695]

Pennington Z, Judy BF, Zakaria HM, et al. Learning curves in robot-assisted spine surgery: a systematic review and proposal of application to residency curricula. Neurosurg Focus. 2022;52(1):E3. [PMID: 34973673 DOI: 10.3171/2021.10.FOCUS21496]

Zhou LP, Zhang ZG, Li D, et al. Robotics in Cervical Spine Surgery: Feasibility and Safety of Posterior Screw Placement. Neurospine. 2023;20(1):329–339. [PMID: 37016881 DOI: 10.14245/ns.2244952.476]

Urakov TM, Chang KH, Burks SS, Wang MY. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus. 2017;42(5):E4. [PMID: 28463609 DOI: 10.3171/2017.2.FOCUS175]

Published

2023-11-21

Issue

Section

Review Article

Downloads

Download data is not yet available.