Gastroenterologist-level detection of gastric precursor lesions and neoplasia with a deep convolutional neural network

Authors

  • Lei Chen
  • Shengtao Zhu
  • Wenjie Chen
  • Li Min
  • Yu Zhao
  • Fengtong Du
  • Shuilong Guo
  • Jie Xing
  • Zheng Zhang
  • Ming Ji
  • Peng Li
  • Lihong Cao
  • Shutian Zhang Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University

DOI:

https://doi.org/10.54844/MR.2022.0044

Abstract

Background: Gastric precursor lesions and neoplasia with very delicate changes in the gastric mucosa could be easily missed or misdiagnosed under endoscopy. Here we developed an automatic real-time pattern recognition tool based on convolutional neural networks (CNNs) algorithm to help endoscopists in detection of chronic atrophic gastritis (CAG) and gastric cancer (GC) lesions. Methods: The five-convolution-layer ZF model and thirteen-convolution-layer VGG16 model were combined in our neural network A total of 10,014 CAG and 3724 GC annotated images were used in the network training. Another independent set consisted of 50 CAG, 50 GC and 100 negative controls images were used to evaluate the performance of the final network. Results: In CAG detection, the performance of our model was much better than the average performance of the 77 endoscopists in sensitivity, specificity and accuracy (95% versus 74%, 86% versus 82%, 90% versus 78%, respectively). In GC detection, the performance of our model achieved a slightly higher sensitivity (90% versus 87%), but a lower specificity (50% versus 74%) and accuracy (70% versus 80%) than the average performance of the 89 endoscopists. Conclusion: In conclusion, we provided a CNN based computational tool to improve the detection of CAG and GC under endoscopy, and simplify diagnostic procedures.

References

Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E86. [PMID:25220842 DOI: 10.1002/ijc.29210]

Yuasa N, Nimura Y. Survival after surgical treatment of early gastric cancer, surgical techniques, and long-term survival. Langenbecks Arch Surg. 2005;390(4):286–293. [PMID:15133674 DOI: 10.1007/s00423-004-0482-y]

Park JM, Ryu WS, Kim JH, et al. Prognostic factors for advanced gastric cancer: stage-stratified analysis of patients who underwent curative resection. Cancer Res Treat. 2006;38(1):13–18. [ PMID:19771253 DOI: 10.4143/crt.2006.38.1.13]

Kato S, Matsukura N, Tsukada K, et al. Helicobacter pylori infection–negative gastric cancer in Japanese hospital patients: incidence and pathological characteristics. Cancer Sci. 2007;98(6):790–794. [ PMID:17470129 DOI: 10.1111/j.1349-7006.2007.00478.x]

Kim N, Park RY, Cho SI, et al. Helicobacter pylori infection and development of gastric cancer in Korea: long-term follow-up. J Clin Gastroenterol. 2008;42(5):448–454. [PMID:18344895 DOI: 10.1097/MCG.0b013e318046eac3]

Siurala M, Varis K, Wiljasalo M. Studies of patients with atrophic gastritis: a 10-15-year follow-up. Scand J Gastroenterol. 1966;1(1):40–48. [PMID:5914451 DOI: 10.1080/00365521.1966.11800612]

Ohata H, Kitauchi S, Yoshimura N, et al. Progression of chronic atrophic gastritis associated with Helicobacter pylori infection increases risk of gastric cancer. Int J Cancer. 2004;109(1):138–143. [PMID:14735480 DOI: 10.1002/ijc.11680]

De Vries AC, Haringsma J, Kuipers E. The detection, surveillance and treatment of premalignant gastric lesions related to Helicobacter pylori infection. Helicobacter. 2007;12(1):1–15. [PMID:17241295 DOI: 10.1111/j.1523-5378.2007.00475.x]

De Vries AC, Van Grieken NC, Looman CW, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology. 2008;134(4):945–952. [PMID:18395075 DOI: 10.1053/j.gastro.2008.01.071]

Chadwick G, Groene O, Riley S, et al. Gastric Cancers Missed During Endoscopy in England. Clin Gastroenterol Hepatol. 2015;13(7):1264–1270. [PMID:25645877 DOI: 10.1016/j.cgh.2015.01.025]

Kaise M. Advanced endoscopic imaging for early gastric cancer. Best Pract Res Clin Gastroenterol. 2015;29(4):575–587. [PMID:26381303 DOI: 10.1016/j.bpg.2015.05.010]

Moon HS. Improving the Endoscopic Detection Rate in Patients with Early Gastric Cancer. Clin Endosc. 2015;48(4):291–296. [PMID:26240801 DOI: 10.5946/ce.2015.48.4.291]

Deng J, Dong W, Socher R., Li L-J, Li K, Li F-F. Imagenet: A large-scale hierarchical image database. in Computer Vision and Pattern Recognition. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009 [DOI: 10.1109/CVPR.2009.5206848]

Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117. [PMID:25462637 DOI: 10.1016/j.neunet.2014.09.003]

Arevalo JA. González. Hybrid image representation learning model with invariant features for basal cell carcinoma detection. Proc. SPIE. 2013. [DOI: 10.1117/12.2035530]

Cruz-Roa AA, Arevalo Ovalle JE, Madabhushi A, González Osorio FA. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403–410. [PMID:24579166 DOI: 10.1007/978-3-642-40763-5_50]

Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv 2013;16(02):583–590. [PMID:24579188 DOI: 10.1007/978-3-642-40763-5_72]

Suk HI, Lee SW, Shen D. Alzheimer’s Disease Neuroimaging Initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–859. [PMID:24363140 DOI: 10.1007/s00429-013-0687-3]

Suk HI, Lee SW, Shen D. Alzheimer’s Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014;101:569–582. [PMID:25042445 DOI: 10.1016/j.neuroimage.2014.06.077]

Li F, Tran L, Thung KH, Ji S, Shen D, Li J. Robust Deep Learning for Improved Classification of AD/MCI Patients. Machine Learning in Medical Imaging,2014. [DOI: 10.1007/978-3-319-10581-9_30]

Jamieson AR, Drukker K, Giger ML. Breast image feature learning with adaptive deconvolutional networks Proc. SPIE 8315, Medical Imaging, 2012: [DOI: 10.1117/12.910710]

Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115–118. [PMID:28117445 DOI: 10.1038/nature21056]

Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. in European conference on computer vision. Computer Vision–ECCV 2014, 2014.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer Science 2014. [DOI: 10.48550/arXiv.1409.1556]

Ren S, He K, Girshick R, Sun J. Faster R-NN: Towards Real-ime Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2017;39(6):1137–1149. [PMID:27295650 DOI: 10.1109/TPAMI.2016.2577031]

Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol. 1996;20(10):1161–1181.[ PMID:8827022 DOI: 10.1097/00000478-199610000-00001]

Fleiss JL, Nee JC, Landis JR. Large sample variance of kappa in the case of different sets of raters. Psychological Bulletin. 1979;86(5):974. [DOI: 10.1037/0033-2909.86.5.974]

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. [DOI: 10.2307/2529310]

Takemura Y, Yoshida S, Tanaka S, et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest Endosc. 2012;75(1):179–185. [PMID:22196816 DOI: 10.1016/j.gie.2011.08.051]

Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real–time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83(3):643–649. [PMID:26264431 DOI: 10.1016/j.gie.2015.08.004]

Zhu J, Wang L, Chu Y, et al. A new descriptor for computer–aided diagnosis of EUS imaging to distinguish autoimmune pancreatitis from chronic pancreatitis. Gastrointest Endosc. 2015;82(5):831–836.[PMID:25952089 DOI: 10.1016/j.gie.2015.02.043]

Das A, Nguyen CC, Li F, Li B. Digital image analysis of EUS images accurately differentiates pancreatic cancer from chronic pancreatitis and normal tissue. Gastrointest Endosc. 2008;67(6):861–867. [PMID:18179797 DOI: 10.1016/j.gie.2007.08.036]

Zhang MM, Yang H, Jin ZD, Yu JG, Cai ZY, Li ZS. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images. Gastrointest Endosc. 2010;72(5):978–985. [PMID:20855062 DOI: 10.1016/j.gie.2010.06.042]

Zhu M, Xu C, Yu J, et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images: a diagnostic test. PLoS One. 2013;8(5):e63820. [PMID:23704940 DOI: 10.1371/journal.pone.0063820]

Downloads

Published

2021-12-06 — Updated on 2023-12-18

Versions

Issue

Section

Original Articles

Downloads

Download data is not yet available.